

NATURAL RESOURCES CONSERVATION SERVICE (NRCS)

OH-ENG-234a 03/00

COMPOSTING DESIGN WORKSHEET FOR WINDROWS

Landowner:						County:			
Designer:				Date:		Checked:			Date:
1.	Calculate primary & secondary composting cycle times as a function of the design weight (see tables 1-3):								
I	Primary cycle time $(T_1) = 5.0 \times (\underline{}_{Design} \text{ Weight } (W_1, \text{ largest animal anticipated}) = \underline{}_{(10 \text{ day min})}$								Days
;	Secondary cycle time (T_2) = 1/3 x ${(Primary cycle time)}$ = ${(10 \text{ day min})}$ Days								
1.	1. Calculate Primary, Secondary & Storage Volumes (or use Tables 1 through 3):								
I	Prim	nary Volume = 0.2 >	lbs. Loss	s / Day (ADL)	x	Primary Cycle Time	= e (T ₁)		cu ft
;	Sec	ondary Volume =0.2 >	lbs. Loss	s / Day (ADL)	x Se	condary Cycle Tim	= ne (T ₂)		cu ft
;	Stor	age Volume = 0.2 >		s / Day (ADL)	х	30 days (T ₃)	=		cu ft
_	Alternate: (use with large animals), W_1 = weight of largest animal								
	Primary Volume = 0.2 x W ₁ (lbs.) x Integer (ADL * T ₁ / W ₁) =cu ft								
;	Secondary Volume = 0.2 x W ₁ (lbs.) x Integer (ADL * T ₂ / W ₁) =cu ft								
Storage Volume = 0.2 x W ₁ (lbs.) x Integer (ADL * T ₃ / W ₁) =cu ft									
Indicate the windrow height and resulting windrow area used.									
	Assume a windrow height of 7 ft. and continue. Windrow Height = ft Windrow Section area and base width assume 1 ft. top width and 1:1 side slopes								
		Windrow Height (ft)		Section Area	\	Vindrow Base Wid (ft)	lth	Pad Width (ft)	n
		5		30		11		52 56	

15

56

3.	Calculate the length of the Primary, Secondary and Storage windrows. **The Design Windrow Length is longer of the primary windrow length or sum of the secondary and storage windrow lengths. Then calculate the pad length.							
	Primary Windrow Length = ()/() = ft Primary Volume Primary Windrow Area (nearest ft.)							
	f the composting windrow length is less than twice the windrow height, reduce the height and go back to step 2. This indicates the composting configuration will be a compost pile versus a windrow.							
	Secondary Windrow Length = () / () = ft Secondary Volume Primary Windrow Area (nearest ft.)							
	Storage Windrow Length = () / () = ft Storage Volume Primary Windrow Area (nearest ft.)							
	Pad Length = **Design Windrow Length + 10 ft. = ft (nearest ft.)							
4.	Calculate Composting Pad Area							
	Pad width = 10 ft + primary windrow base + 10 ft. + secondary windrow base + 10 ft (See Table in step 2)							
	Pad width = 10 ft + + 10 ft. + + 10 ft. + ft							
	Compost Pad Area = x = sq. ft. Pad Length Pad Width							
5.	Calculate annual sawdust requirements. (This assumes no reintroduction of finished compost to the primary windrow, however it is recommended that up to 50% of fresh sawdust requirements be met with finished compost.)							
	Cubic Yards Sawdust = x							